Plots the probability of rejecting \(H0\) ('Positive result') and rejecting Ha
('Negative result') for different true response binomial parameters
if the input is an object returned by fleming1stage, simon2stage, simon2stage, sargent1stage or sargent2stage, interactively choose
the design number

plotPhII(
  x,
  design_nr = 1,
  main = "PhII design",
  xlab = "True response probability",
  grid = "Y",
  ylab,
  ...
)

Arguments

x

an object returned by fleming1stage, simon2stage, simon2stage, sargent1stage or sargent2stage

design_nr

design_nr returned by fleming1stage, simon2stage, simon2stage, sargent1stage or sargent2stage
default is 1 (for sargent1stage, only one design is outputted)

main

title of the graph, passed on to plot

xlab

x-axis label of the graph, passed on to plot

grid

add grid to plot ("Y" or "N")

ylab

y-axis label of the graph, passed on to plot

...

other arguments passed on to plot

References

Sargent DJ, Chan V, Goldberg RM. A three-outcome design for phase II clinical
trials. Control Clin Trials. 2001;22(2):117-125. doi:10.1016/s0197-2456(00)00115-x
Simon R. Optimal two-Stage Designs for Phase II Clinical Trials.
Control Clin Trials. 1989;10:1-10

Examples

# \donttest{
fleming1 <- fleming1stage(p0 = 0.45, pa = 0.7, alpha = 0.05, beta = 0.2)
plotPhII(fleming1)

#>    ptrue    ProbrejHA Probnodec   ProbrejH0
#> 1   0.35 0.9970618321         0 0.002938168
#> 2   0.36 0.9959267192         0 0.004073281
#> 3   0.37 0.9944311524         0 0.005568848
#> 4   0.38 0.9924870354         0 0.007512965
#> 5   0.39 0.9899923609         0 0.010007639
#> 6   0.40 0.9868309265         0 0.013169073
#> 7   0.41 0.9828725440         0 0.017127456
#> 8   0.42 0.9779738368         0 0.022026163
#> 9   0.43 0.9719797118         0 0.028020288
#> 10  0.44 0.9647255700         0 0.035274430
#> 11  0.45 0.9560402968         0 0.043959703
#> 12  0.46 0.9457500401         0 0.054249960
#> 13  0.47 0.9336827460         0 0.066317254
#> 14  0.48 0.9196733798         0 0.080326620
#> 15  0.49 0.9035697152         0 0.096430285
#> 16  0.50 0.8852385283         0 0.114761472
#> 17  0.51 0.8645719908         0 0.135428009
#> 18  0.52 0.8414940189         0 0.158505981
#> 19  0.53 0.8159663019         0 0.184033698
#> 20  0.54 0.7879937185         0 0.212006281
#> 21  0.55 0.7576288397         0 0.242371160
#> 22  0.56 0.7249752269         0 0.275024773
#> 23  0.57 0.6901892596         0 0.309810740
#> 24  0.58 0.6534802683         0 0.346519732
#> 25  0.59 0.6151088084         0 0.384891192
#> 26  0.60 0.5753829823         0 0.424617018
#> 27  0.61 0.5346528055         0 0.465347194
#> 28  0.62 0.4933027042         0 0.506697296
#> 29  0.63 0.4517423319         0 0.548257668
#> 30  0.64 0.4103959891         0 0.589604011
#> 31  0.65 0.3696910191         0 0.630308981
#> 32  0.66 0.3300456291         0 0.669954371
#> 33  0.67 0.2918566444         0 0.708143356
#> 34  0.68 0.2554877341         0 0.744512266
#> 35  0.69 0.2212586539         0 0.778741346
#> 36  0.70 0.1894360235         0 0.810563976
#> 37  0.71 0.1602261005         0 0.839773900
#> 38  0.72 0.1337699219         0 0.866230078
#> 39  0.73 0.1101410729         0 0.889858927
#> 40  0.74 0.0893462031         0 0.910653797
#> 41  0.75 0.0713282627         0 0.928671737
#> 42  0.76 0.0559722748         0 0.944027725
#> 43  0.77 0.0431133144         0 0.956886686
#> 44  0.78 0.0325462299         0 0.967453770
#> 45  0.79 0.0240365395         0 0.975963460
#> 46  0.80 0.0173318695         0 0.982668130
#> 47  0.81 0.0121732711         0 0.987826729
#> 48  0.82 0.0083057807         0 0.991694219
#> 49  0.83 0.0054876544         0 0.994512346
#> 50  0.84 0.0034978240         0 0.996502176
#> 51  0.85 0.0021412671         0 0.997858733
#> 52  0.86 0.0012521604         0 0.998747840
#> 53  0.87 0.0006948609         0 0.999305139
#> 54  0.88 0.0003629340         0 0.999637066
#> 55  0.89 0.0001765883         0 0.999823412
#> 56  0.90 0.0000789819         0 0.999921018
simon2<- simon2stage(p0 = 0.1, pa = 0.3, alpha = 0.05, beta = 0.2,
                     eps = 0.005, N_min = 1, N_max = 50)
plotPhII(simon2)

#>    ptrue   ProbrejHA Probnodec    ProbrejH0
#> 1   0.00 1.000000000         0 0.000000e+00
#> 2   0.01 0.999998263         0 1.736561e-06
#> 3   0.02 0.999951385         0 4.861479e-05
#> 4   0.03 0.999677227         0 3.227735e-04
#> 5   0.04 0.998811446         0 1.188554e-03
#> 6   0.05 0.996832180         0 3.167820e-03
#> 7   0.06 0.993119277         0 6.880723e-03
#> 8   0.07 0.987024517         0 1.297548e-02
#> 9   0.08 0.977938221         0 2.206178e-02
#> 10  0.09 0.965344115         0 3.465588e-02
#> 11  0.10 0.948858789         0 5.114121e-02
#> 12  0.11 0.928255078         0 7.174492e-02
#> 13  0.12 0.903470569         0 9.652943e-02
#> 14  0.13 0.874603501         0 1.253965e-01
#> 15  0.14 0.841898811         0 1.581012e-01
#> 16  0.15 0.805727157         0 1.942728e-01
#> 17  0.16 0.766559609         0 2.334404e-01
#> 18  0.17 0.724940323         0 2.750597e-01
#> 19  0.18 0.681459180         0 3.185408e-01
#> 20  0.19 0.636725868         0 3.632741e-01
#> 21  0.20 0.591346556         0 4.086534e-01
#> 22  0.21 0.545903842         0 4.540962e-01
#> 23  0.22 0.500940404         0 4.990596e-01
#> 24  0.23 0.456946472         0 5.430535e-01
#> 25  0.24 0.414351016         0 5.856490e-01
#> 26  0.25 0.373516420         0 6.264836e-01
#> 27  0.26 0.334736252         0 6.652637e-01
#> 28  0.27 0.298235711         0 7.017643e-01
#> 29  0.28 0.264174281         0 7.358257e-01
#> 30  0.29 0.232650100         0 7.673499e-01
#> 31  0.30 0.203705616         0 7.962944e-01
#> 32  0.31 0.177334080         0 8.226659e-01
#> 33  0.32 0.153486525         0 8.465135e-01
#> 34  0.33 0.132078885         0 8.679211e-01
#> 35  0.34 0.112999008         0 8.870010e-01
#> 36  0.35 0.096113327         0 9.038867e-01
#> 37  0.36 0.081273050         0 9.187269e-01
#> 38  0.37 0.068319739         0 9.316803e-01
#> 39  0.38 0.057090215         0 9.429098e-01
#> 40  0.39 0.047420759         0 9.525792e-01
#> 41  0.40 0.039150603         0 9.608494e-01
#> 42  0.41 0.032124732         0 9.678753e-01
#> 43  0.42 0.026196049         0 9.738040e-01
#> 44  0.43 0.021226941         0 9.787731e-01
#> 45  0.44 0.017090328         0 9.829097e-01
#> 46  0.45 0.013670253         0 9.863297e-01
#> 47  0.46 0.010862089         0 9.891379e-01
#> 48  0.47 0.008572427         0 9.914276e-01
#> 49  0.48 0.006718715         0 9.932813e-01
#> 50  0.49 0.005228705         0 9.947713e-01
#> 51  0.50 0.004039764         0 9.959602e-01

sargent1 <- sargent1stage(p0 = 0.2, pa = 0.35, alpha = 0.1, beta = 0.1, eta = 0.8, pi = 0.8,
                         eps = 0.005, N_min = 35, N_max = 50)
plotPhII(sargent1)

#>    ptrue    ProbrejHA    Probnodec    ProbrejH0
#> 1   0.10 9.981709e-01 0.0013393325 0.0004897231
#> 2   0.11 9.961163e-01 0.0027329574 0.0011507657
#> 3   0.12 9.924862e-01 0.0050709228 0.0024429208
#> 4   0.13 9.865584e-01 0.0086809566 0.0047606394
#> 5   0.14 9.775102e-01 0.0138667620 0.0086230633
#> 6   0.15 9.644843e-01 0.0208537783 0.0146619583
#> 7   0.16 9.466721e-01 0.0297379840 0.0235899070
#> 8   0.17 9.234020e-01 0.0404477193 0.0361502714
#> 9   0.18 8.942200e-01 0.0527261741 0.0530538233
#> 10  0.19 8.589522e-01 0.0661383428 0.0749095034
#> 11  0.20 8.177401e-01 0.0801018772 0.1021580183
#> 12  0.21 7.710459e-01 0.0939373085 0.1350167608
#> 13  0.22 7.196267e-01 0.1069302794 0.1734429809
#> 14  0.23 6.644833e-01 0.1183971050 0.2171196038
#> 15  0.24 6.067897e-01 0.1277451908 0.2654650812
#> 16  0.25 5.478130e-01 0.1345213227 0.3176656858
#> 17  0.26 4.888307e-01 0.1384431753 0.3727261461
#> 18  0.27 4.310552e-01 0.1394120590 0.4295327718
#> 19  0.28 3.755701e-01 0.1375074947 0.4869223796
#> 20  0.29 3.232833e-01 0.1329662958 0.5437503817
#> 21  0.30 2.748975e-01 0.1261502554 0.5989522097
#> 22  0.31 2.308992e-01 0.1175072023 0.6515935980
#> 23  0.32 1.915629e-01 0.1075301557 0.7009068997
#> 24  0.33 1.569690e-01 0.0967187225 0.7463122973
#> 25  0.34 1.270298e-01 0.0855459169 0.7874243213
#> 26  0.35 1.015222e-01 0.0744324508 0.8240453253
#> 27  0.36 8.012216e-02 0.0637294044 0.8561484362
#> 28  0.37 6.243786e-02 0.0537091872 0.8838529577
#> 29  0.38 4.804078e-02 0.0445639194 0.9073952991
#> 30  0.39 3.649186e-02 0.0364098475 0.9270982906
#> 31  0.40 2.736254e-02 0.0292961498 0.9433413127
#> 32  0.41 2.025043e-02 0.0232164549 0.9565331107
#> 33  0.42 1.478990e-02 0.0181215413 0.9670885573
#> 34  0.43 1.065801e-02 0.0139319470 0.9754100456
#> 35  0.44 7.576774e-03 0.0105495366 0.9818736896
#> 36  0.45 5.312492e-03 0.0078674043 0.9868201034
#> 37  0.46 3.672957e-03 0.0057777943 0.9905492485
#> 38  0.47 2.503364e-03 0.0041779733 0.9933186628
#> 39  0.48 1.681505e-03 0.0029741787 0.9953443162
#> 40  0.49 1.112761e-03 0.0020838924 0.9968033468
#> 41  0.50 7.252455e-04 0.0014367570 0.9978379975
#> 42  0.51 4.653551e-04 0.0009744677 0.9985601772
#> 43  0.52 2.938473e-04 0.0006499606 0.9990561921
#> 44  0.53 1.825167e-04 0.0004261706 0.9993913127
#> 45  0.54 1.114593e-04 0.0002745867 0.9996139540
#> 46  0.55 6.688577e-05 0.0001737713 0.9997593429

sargent2 <- sargent2stage(p0 = 0.1, pa = 0.3, alpha = 0.05, beta = 0.1,
                          eta = 0.8, pi = 0.8,
                          eps = 0.005, N_min = 15, N_max = 30)
plotPhII(sargent2,design_nr=1)

#>    ptrue   ProbrejHA    Probnodec    ProbrejH0
#> 1   0.00 1.000000000 0.0000000000 0.000000e+00
#> 2   0.01 0.999952239 0.0000460247 1.736561e-06
#> 3   0.02 0.999331722 0.0006196635 4.861479e-05
#> 4   0.03 0.997042126 0.0026351003 3.227735e-04
#> 5   0.04 0.991828422 0.0069830246 1.188554e-03
#> 6   0.05 0.982563824 0.0142683564 3.167820e-03
#> 7   0.06 0.968403677 0.0247155999 6.880723e-03
#> 8   0.07 0.948848121 0.0381763961 1.297548e-02
#> 9   0.08 0.923744914 0.0541933073 2.206178e-02
#> 10  0.09 0.893255555 0.0720885599 3.465588e-02
#> 11  0.10 0.857801377 0.0910574121 5.114121e-02
#> 12  0.11 0.818001296 0.1102537821 7.174492e-02
#> 13  0.12 0.774609107 0.1288614617 9.652943e-02
#> 14  0.13 0.728455343 0.1461481581 1.253965e-01
#> 15  0.14 0.680396606 0.1615022051 1.581012e-01
#> 16  0.15 0.631273766 0.1744533912 1.942728e-01
#> 17  0.16 0.581879366 0.1846802426 2.334404e-01
#> 18  0.17 0.532933838 0.1920064856 2.750597e-01
#> 19  0.18 0.485069730 0.1963894499 3.185408e-01
#> 20  0.19 0.438822873 0.1979029953 3.632741e-01
#> 21  0.20 0.394629325 0.1967172317 4.086534e-01
#> 22  0.21 0.352826917 0.1930769250 4.540962e-01
#> 23  0.22 0.313660313 0.1872800910 4.990596e-01
#> 24  0.23 0.277288573 0.1796578982 5.430535e-01
#> 25  0.24 0.243794358 0.1705566583 5.856490e-01
#> 26  0.25 0.213194039 0.1603223814 6.264836e-01
#> 27  0.26 0.185448125 0.1492881272 6.652637e-01
#> 28  0.27 0.160471528 0.1377641831 7.017643e-01
#> 29  0.28 0.138143331 0.1260309493 7.358257e-01
#> 30  0.29 0.118315793 0.1143343067 7.673499e-01
#> 31  0.30 0.100822445 0.1028831711 7.962944e-01
#> 32  0.31 0.085485180 0.0918489002 8.226659e-01
#> 33  0.32 0.072120318 0.0813662071 8.465135e-01
#> 34  0.33 0.060543644 0.0715352416 8.679211e-01
#> 35  0.34 0.050574487 0.0624245205 8.870010e-01
#> 36  0.35 0.042038905 0.0540744216 9.038867e-01
#> 37  0.36 0.034772060 0.0465009905 9.187269e-01
#> 38  0.37 0.028619888 0.0396998513 9.316803e-01
#> 39  0.38 0.023440162 0.0336500528 9.429098e-01
#> 40  0.39 0.019103040 0.0283177189 9.525792e-01
#> 41  0.40 0.015491195 0.0236594075 9.608494e-01
#> 42  0.41 0.012499615 0.0196251176 9.678753e-01
#> 43  0.42 0.010035144 0.0161609057 9.738040e-01
#> 44  0.43 0.008015840 0.0132111010 9.787731e-01
#> 45  0.44 0.006370204 0.0107201240 9.829097e-01
#> 46  0.45 0.005036325 0.0086339279 9.863297e-01
#> 47  0.46 0.003960996 0.0069010931 9.891379e-01
#> 48  0.47 0.003098817 0.0054736101 9.914276e-01
#> 49  0.48 0.002411323 0.0043073924 9.932813e-01
#> 50  0.49 0.001866146 0.0033625593 9.947713e-01
#> 51  0.50 0.001436234 0.0026035309 9.959602e-01
# }